Jump to content

What units do you use?


Guest IanJ

Recommended Posts

I just came across an interesting problem. I wanted to post tire pressure, but I didn't know what units I should use to be "metric friendly." So, I went with PSI and bar, which are the two I see most commonly. The SI standard pressure measurement is kilopascals (kPa), but I've never seen a non-scientist actually use that.

 

So, what pressure unit is the "correct" metric one?

 

Here are the units I think are correct for metric use:

 

Length: meter derivatives (km, cm, etc.)

Weight: gram derivatives (kg, etc.)

Temperature: degrees celsius

Volume: litres

Fuel mileage: l/100km -- or do people prefer km/l?

Pressure: kPa? bar? a German website I found used PSI as the primary pressure unit and bar as secondary

 

I'm probably missing some, but those are the ones that show up most commonly on the board. I'd appreciate any input from board members who use metric units in their everyday lives.

Link to comment
Share on other sites

I believe you are right on all accounts, but kPA is a unit nobody uses. Can't go wrong with Bar.

(Continental) Europeans should use the SI system:

 

The International System of Units (SI)

 

All systems of weights and measures, metric and non-metric, are linked through a network of international agreements supporting the International System of Units. The International System is called the SI, using the first two initials of its French name Système International d'Unités. The key agreement is the Treaty of the Meter (Convention du Mètre), signed in Paris on May 20, 1875. 48 nations have now signed this treaty, including all the major industrialized countries. The United States is a charter member of this metric club, having signed the original document back in 1875.

 

The SI is maintained by a small agency in Paris, the International Bureau of Weights and Measures (BIPM, for Bureau International des Poids et Mesures), and it is updated every few years by an international conference, the General Conference on Weights and Measures (CGPM, for Conférence Générale des Poids et Mesures), attended by representatives of all the industrial countries and international scientific and engineering organizations. The 21st CGPM met in October 1999; the next meeting will be in 2003. As BIPM states on its web site, "The SI is not static but evolves to match the world's increasingly demanding requirements for measurement."

 

At the heart of the SI is a short list of base units defined in an absolute way without referring to any other units. The base units are consistent with the part of the metric system called the MKS system. In all there are seven SI base units:

 

    * the meter for distance,

    * the kilogram for mass,

    * the second for time,

    * the ampere for electric current,

    * the kelvin for temperature,

    * the mole for amount of substance, and

    * the candela for intensity of light.

 

Other SI units, called SI derived units, are defined algebraically in terms of these fundamental units. For example, the SI unit of force, the newton, is defined to be the force that accelerates a mass of one kilogram at the rate of one meter per second per second. This means the newton is equal to one kilogram meter per second squared, so the algebraic relationship is N = kg·m·s-2. Currently there are 22 SI derived units. They include:

 

    * the radian and steradian for plane and solid angles, respectively;

    * the newton for force and the pascal for pressure;

    * the joule for energy and the watt for power;

    * the degree Celsius for everyday measurement of temperature;

    * units for measurement of electricity: the coulomb (charge), volt (potential), farad (capacitance), ohm (resistance), and siemens (conductance);

    * units for measurement of magnetism: the weber (flux), tesla (flux density), and henry (inductance);

    * the lumen for flux of light and the lux for illuminance;

    * the hertz for frequency of regular events and the becquerel for rates of radioactivity and other random events;

    * the gray and sievert for radiation dose; and

    * the katal, a unit of catalytic activity used in biochemistry.

 

Future meetings of the CGPM may make additions to this list; the katal was just added by the 21st CGPM in 1999.

 

In addition to the 29 base and derived units, the SI permits the use of certain additional units, including:

 

    * the traditional mathematical units for measuring angles (degree, arcminute, and arcsecond);

    * the traditional units of civil time (minute, hour, day, and year);

    * two metric units commonly used in ordinary life: the liter for volume and the tonne (metric ton) for large masses;

    * the logarithmic units bel and neper (and their multiples, such as the decibel); and

    * three non-metric scientific units whose values represent important physical constants: the astronomical unit, the atomic mass unit or dalton, and the electronvolt.

 

The SI currently accepts the use of certain other metric and non-metric units traditional in various fields. These units are supposed to be "defined in relation to the SI in every document in which they are used," and "their use is not encouraged." These barely-tolerated units might well be prohibited by future meetings of the CGPM. They include:

 

    * the nautical mile and knot, units traditionally used at sea and in meteorology;

    * the are and hectare, common metric units of area;

    * the bar, a pressure unit, and its commonly-used multiples such as the millibar in meteorology and the kilobar in engineering;

    * the angstrom and the barn, units used in physics and astronomy.

 

The SI does not allow use of any units other than those listed above and their multiples. In particular, it does not allow use of any of the English traditional units (the horsepower, for example), nor does it allow the use of any of the algebraically-derived units of the former CGS system, such as the erg, gauss, poise, stokes, or gal. In addition, the SI does not allow use of other traditional scientific and engineering units, such as the torr, curie, calorie, or rem.

 

Certain scientific fields have defined units more or less compatible with the SI, but not part of the SI. The use of the jansky in astronomy is a good example. There is always the chance that future meetings of the CGPM could add these units to the SI, but for the present they are not approved.

 

For multiples of approved units, the SI includes a list of prefixes. This list has been extended several times, most recently by the 19th CGPM in 1991. Prefixes now range from yotta- at 1024 (one septillion) to yocto- at 10-24 (one septillionth). There seems to be some need for another extension, but this question was not addressed at the 1999 CGPM. The SI does not allow these prefixes to be used for binary multiples, such as the use of "kilobit" to mean 1024 bits instead of 1000. For binary mulitiples a new list of special prefixes has been established by the International Electrotechnical Commission.

 

Each SI unit is represented by a symbol, not an abbreviation. The use of unit symbols is regulated by precise rules. These symbols are the same in every language of the world. However, the names of the units themselves vary in spelling according to national conventions. Therefore, it is correct for Americans and Germans to write meter, just as it is also correct for the British to write metre, Italians to write metro, and Poles to write metr. See Spelling of Metric Units for additional comments.

Link to comment
Share on other sites

29.92 inches of mercury

Putting that in your tyres must cause problems with unsprung weight? :wacko:

Does it come in bars, or do you buy it by the pound? :huh2:

 

Has anyone used this yet? –> :nopic:

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...